Lyapunov approach to study stability of a particular class of triangular hyperbolic systems
Mohand Ouidir Amirat  1@  , Vincent Andrieu  1  , Mathieu Bajodek  1  , Claire Valentin  1  , Jean Auriol  2  
1 : Laboratoire d'automatique, de génie des procédés et de génie pharmaceutique
Université Claude Bernard Lyon 1, École supérieure de Chimie Physique Electronique de Lyon, Centre National de la Recherche Scientifique
2 : Laboratoire des signaux et systèmes
Centre National de la Recherche Scientifique, CentraleSupélec, Université Paris-Saclay

In this work the stability analysis of a weakly hyperbolic system i.e. with non-diagonalizable principal part and nonuniform coefficients is addressed. We give a sufficient condition of exponential stability in H^1 x L^2 norm and express the optimal convergence rate that can be obtained. The used approach and results, based on Lyapunov analysis of cascade systems are inspired by (see references). Two cases will be treated independently: with and without the source terms. A numerical scheme is designed for several challenging test cases to illustrate the performance and robustness of the Lyapunov stability analysis.



  • Poster
Personnes connectées : 6 Vie privée
Chargement...